[image: image1.png]

[image: image21.emf]
Multiple Package Product Agility
Advancing Agile Product Composition for Windows Installer Packages

Robert Flaming

Windows Installer Program Manager
This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.
Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.
Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.
Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.
© 2007 Microsoft Corporation. All rights reserved.
Microsoft, Office, SQL Server, Windows, and Windows Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.
The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Robust Multi-Package Product Agility
Advancing Agile Product Composition for Windows Installer Packages
In an increasing flat world, agility demands on software providers continue to evolve. Though some leading ISV have made headway in delivering agility to their markets, today’s solutions lack the robustness and integration of their pre-agile counterparts. Robust Multi-Package Product Agility will examine the ISV agility choices that are present in today’s market and discuss how the changes delivered with Windows Installer 4.5 will assist with today’s software packaging agility.
Market Forces Driving Software Package Agility
Packaged software product agility is driven by shrinking production time, longer product lifetimes, increasingly rich integration, and greater return on scarce resources.

The first agility driver is the shrinking production time and lengthening product lifetimes. The patience of the software ecosystem is shrinking as investors no longer feel they can wait the classic 3-5 year development cycle for package software. Product lifetimes are lengthening and with them the expense of having products in the market. Markets can change dramatically over the course of the 10 year lifetime of a package software product and in market products are now expected to change with those markets.
The second agility driver is the shift from long lists of individual features to deeply integrated features into rich fabric of existing experiences. Software products now must provide trial versions to enable customers to validate the software will indeed provide the needed solution. When consumers do buy, they now expect their software will grow to provide increasingly richer experiences as the consumers grow into the software. As consumers increase their software library, they increasingly expect further amplification productivity amplification between products so the whole is greater than the sum of its parts.
The third agility driver is doing more with less by leveraging platforms and frameworks to increase the efficient use of scarce resources. “Write once, run anywhere” frameworks are moving to differentiate themselves with “deploy everywhere” seamless agile packaging experience. With rise of ubiquitous intermediate platforms, there is increasing responsibility for secure servicing for the increasingly pervasive attack surface. As software providers are rise to meet growing market demands for their software, they must do so with an ever shrinking pool of resources.
Today’s software packaging agility solutions lack the robust integration of the previous generation of software packaging.

Problems with Today’s Agility Solutions
Today’s solutions of micro-packages, chainers, and bridges end up trading off robustness and integration with the ability to respond to the market forces driving software package agility.
Today’s Agility Solutions

Micro-packages involve breaking up large monolithic packages into smaller non-overlapping packages. The first motivation for micro-packages was the ability to quickly add new languages for new markets without having to rebuild the core of the product. The second motivation is to deliver software frameworks that are both easy for consumers to distribute and providers to service. The third motivation for micro-packages was increasing the providers return on software suites by tailoring specific software combinations suite to the needs of each market segment.
Chainers compose partitioned micro-packages a single consumer view. Chainer designers start with a static representation the salient details in slender chainer data files. Chainers then evolve to detect and compose the static chainer data files into a unified view for subsequent aggregate operations. Chainers now have enough context start to perform their chaining operations.
Bridges involve simulating the various single package software lifecycle experiences when there are multiple packages. Agile solutions require wrapping the chainer with bridges for user experience and operating system integration. Today these bridging experiences are incomplete relative to the single package to product.

Today’s single package products are superior to today’s multi-package products in their behavioral robustness, system integration, and servicing richness.
Back to the Future
Back in the mid 1990’s, when software suites were taking off as a merger of standalone applications, it was common for a suite to consist of a non-integrated merge of the standalones. The prevailing engineering view of the day was to merge the standalones into a single unified view at production time. For software producers at the end of the 1990’s, the unification was represented in the Windows Installer package for the suite.

Suites of the 90’s were a relatively rare thing. They were the largest accumulation of a software producer’s value proposition that were just evolving into Graphical User Interface programming and beyond the floppy drive media format. Compressing standalone packaging into a single suite packaging was the most efficient engineering choice of the day.
While building up these unified packages, additional value was built in to the packaging and distribution systems. Installation support costs across multiple standalones were difficult to tie to any individual standalone so robust transaction semantics were added to reduce the support costs of suite installation failures. Today’s agile solutions have lost the robustness of the single package transaction.

Technology in the 1990’s set out to reduce the cost of software discovery too. Part of the solution was to stitch the package into the system integration points so that the absence of software to serve an integration point could then trigger the install of the needed software. Today’s agile solutions have lost the integration available through the single package.
Evolving Legacy Robustness with Today’s Agility
Since the late 1990’s, we’ve been on a path that separates the single unified package (and unified engine that operated on that unified package) into multiple layers of packaging (and engines) that enable the agility demanded by the market. While moving from unified to layered, a number of the valuable innovations provided during the unification of the 1990’s were lost. As we approach the next decade of computing, we should look to evolving the past and present value propositions back together.
Blending Layers, Robustness, and System Integration
As the past is blended with the present, the first problem is to join today’s layering techniques with yesterday’s robustness and integration.

The most prominent attribute of modern agility package software solutions is the ability to operate in layers. The principle upon which the monolithic is partitioned into layers varies between contexts but today’s agility evolves through layers. Further agility evolution will need to accommodate layering.
The most prominent attribute of previous generation of package software investments is the robustness of the transaction. Package transactions reduce the support costs of installation failures as the machine is not left in an indeterminate intermediate state. The robustness of the transaction must be brought to layered packages.
The bridges in today’s agility solutions need to be melded with the system integration from the last generation. The bridging User Interface needs to be reachable from the legacy system UI integration. The bridge to the chainer needs to be accessible from the system’s package integration.
With the first tier behaviors melded, the next tier behaviors also need to be considered.

Maintain Globalization, Localization, and Security
Agile solutions need to maintain the globalization, localization and security advances made to date.

Globalization is the ability to take the same software product and reuse it in any location in the globe. Though globalization is a discipline unto itself, the key elements for packaging are the ability to maximize the reusable pieces of packaging while minimizing costs. Agile packaging globalization involves keeping world-wide binaries in separate world-wide packages so that no rebuilding is required.

Localization is the ability to tailor a software product to a particular locale with minimum cost. Localization in agile packaging generally means creating a package per locale which can usually be localized to that locale at a much lower cost than full packages. Locale specific packages enables simple localized products by combining a globalized and package via the chainer.
Secure packaging itself doesn’t change but there are increased requirements for multi-package product to remain secure. The chainer needs a way of representing its trust in the packages it operates on and the packages need a way of representing the chainer it will trust. Cyclical trust is a solved problem that the agile evolution must not break.
With the second tier behaviors bound in, there are third tier behaviors that help bring it all together.
Broad and Deep Leverage in Ecosystem

It has been said that no one buys software for its packaging so leveraging the existing ecosystem is required to minimize the distribution friction.

One of the top contextual considerations should be whether the constituents in the layers are familiar to the ecosystem. Completely new systems take time to adopt and time for adoption could mean delays in the ability to fully realize the desired agility. Leveraging existing systems as much as possible shrinks the gap between initial availability and realizing full agility.
Another high priority contextual consideration should be the availability of secondary tools from vendors that are committed integrates the old systems with the new systems. On the software provider side, these can be low level technology centric vendors or they can be high level user experience centric vendors. On the software consumer side, there is a similar distribution between low level technology and high level user experience centric vendors. Both the provider and consumer ends of the ecosystem may need to accommodate new paradigms.
A third consideration ought to be the confidence one has that compatibility will be considered. Backward compatibility is the commitment to keep the investments you make today working as the ecosystem progresses their investments. Forward compatibility is the commitment that allows you to extend today’s systems in ways that are customized to your circumstances. Compatibility, both forward and backward, is the ability to not be completely bound to the native facilities to a particular layer on technology in a layer.

With these desired attributes to the evolution of the ecosystem in mind, let’s look at how a solution could be put together.

Layering the Agile Software Packaging Stack
Software layering requires assigning behaviors to appropriate positions in a stack. At the lowest level, choose a foundation of proven materials with well known quantities. At the middle level, choose a minimal amount of new technology that can join the foundational layer to the customization layer. At the top level, place the rest of the customized innovation that will deliver the needed end to end scenarios.
The foundation layer should maximize reuse of well known, broadly available technologies. There has been more than a decade of existing innovation in packaging and distribution. System integration points and robustness have been consistently available for the better part of the decade. Fundamental principles of security, localization, and globalization have also been in place for quite some time. The software packaging and distribution ecosystem itself is also well known as is the compatibility benefits and challenges available there in.
The junction layer should span the foundation and innovation layers. The junction layer contains the elements of innovation most likely to migrate down into the foundation layer over time. The chainer, both the data files and the behaviors, is the most likely innovations that could be absorbed by the foundation over time. As a potential addition to the foundation a full chainer solution will need consider foundational tenets such as security, globalization, localization, broad availability, vendor tooling, and compatibility.
The customization layer is where the context specific changes should be placed. Context specific extensions and junction elements that do not adhere to the foundational tenets are also good choices for this layer. Commonly the user interface and data to drive lower layers are in this layer.
Examples of Agile Software Packaging
Some of Microsoft’s largest product groups have created agile experiences in these layers.

· Knowledge worker productivity application market leader Microsoft Office System has leveraged this method to enable support for over a hundred languages across all of their products.

· Data layer market leader Microsoft SQL Server has leveraged this method for its whole range of products from MSXML to SQL Express all the way up to SQL Server.

· Developer productivity tools leader Microsoft Developer Division has leveraged this method for its range of products from VB and VC runtimes to Common Language Runtimes and from its Express product line to its Team Foundation product line.

Each of these agile packaging experiences optimizes for a different axis of agility but they all share the same foundational layer, similar junction layers, and very different customization layers.
Agile Packaging Advances in Windows Installer 4.5
The Windows Installer is the foundation of the packaging ecosystem with greater than 90% adoption in corporate software packaging and 50% adoption for all software packaging. The Windows Installer 4.5 release is specifically targeting advances in software packaging agility in the foundational layer. With multi-package transactions, embedded UI, embedded chainer, and servicing advances, the robustness and integration of the previous software packaging generation is brought forward into the agile generation.

Multi-Package Transaction

The robustness of a Windows Installer package to a failed operation comes from its transaction. Before Windows Installer 4.5, the robustness of the transaction was bound to a single package. This constraint meant that a when a software provider chose the agility of a multiple package product, they lost the robustness of the transaction across their product.

Windows Installer 4.5 will advance the Windows Installer architecture so that multi-package products can regain the robustness of the transaction and the Windows application integration.
Multi-Package Transaction Theory

The Windows Installer 4.5 multi-package transaction evolved from two key existing assets. The first asset is the existing single package transaction as a cornerstone of Windows Installer package robustness. The second asset the chainers built by today’s agile practitioners. In evolving a solution to fit these two existing assets, the ecosystem advances with minimum disruption.

Existing Windows Installer Single Package Transaction Semantics
The existing single package transaction semantics occurs in three stages: acquisition, execution, and commit.
The first of the three states is an acquisition where user selections are compared to what’s already available at the destination machine and a script is built to alter the destination to meet the users selections. The second stage is execution of the script in a transacted way which means that for every forward operation, there is a backward operation to reverse the change. The third stage is commit where the forward only (non-transacted) actions are performed to the system. Failures in the first and second stages will put the machine back to the state before the operation on the package was attempted. Failures in the third state will make a best effort attempt to restore the machine but full restoration is not expected. The following diagram relates the three stages.

[image: image2]
The initial pivot from single package to multi-package transactions is the detail that both the execution stage and commit stage are contained in the same physical script.

New Multi-Package Transaction Semantics
The multi-package transaction involves aggregating the rollback experience for multiple packages. In the single package primitives, this means that the point in the script just before transitioning into the commit stage is the semantic dividing line. The direction of the multi-package transaction is to first enable batching together the execution phase and later batch together the commit phase.
Terminology wise

· Execution phase is the batch of work before the transition between execution and commit.

· Commit phase is the batch of work after the transition between execution and commit.

The choice to reuse the single package terms execution and commit is intentional as their behavior semantics to the machine are by and large the same.
Let’s walk through the multi-package transaction for a multi-package transaction for two products, A and B. First we batch together the work before the transition between execution and commit which means progressing through package A acquisition and execution stages and then progresses to package B acquisition and execution stages. Second, we batch together the work after the transition between execution and commit which means progressing through package A commit stage and then package B commit stage. The following diagram relates the batching of these stages.

[image: image3]
Existing Layering Between Chainers and Windows Installer
From the beginning, the Windows Installer service has designed to be driven by another layer, generically called a client. The separation of client and service allowed new clients to be built for specific purposes (Active Directory Software Distribution, System Center Configuration Manager, Windows Update, etc) and still be able to rely on the same Windows Installer service to deliver the same net behavior on the package. In the evolution of clients on top of the Windows Installer service, a category of clients emerged called chainers.
A chainer is a client program that exists for the lifetime of the software on the system and integrates additional behaviors during the various stages of the software lifecycle. Chainers are different than bootstappers in that bootstrappers are designed to be a one shot operation designed just for getting the application in place on the system. Chainers are also used during maintenance mode, servicing, upgrades, and uninstall.
For the purpose of packaging agility, it’s the chainers job manage the relationship between different parts of a whole such as a worldwide and language specific packages, standalone applications in a suite, or dependent layers of an application stack. Chainers provide the user an aggregate view of the behaviors while delegating to its individual constituents their specific part of the load.
For the purposes of discussion, following diagram relates a fictional product called SmartTextMail composed of a smart redistributable framework, text processor standalone, and mail client standalone, in both worldwide packages and language packs. On the vertical axis, the packages are divided by architectural layer boundaries. On the horizontal axis, the packages are divided by suite functionality boundaries. On the diagonal axis, the packages are divided by language boundaries.

[image: image4]
A generic chainer would have three primary working objects: user interface, package relationship data file, package handler. Usually the highest order bit for the chainer’s user interface is to make the disaggregate packages appear whole to the user. Usually the highest order bit for the package relationship data file is just to inform the chainer what rules there between the packages that the chainer needs to follow. Packaging handling is the prerequisite behavior of a chainer as it is the interface with the Windows Installer. The following diagram illustrates how the layers of a generic chainer are stacked as well as the relationship to the Windows Installer service

[image: image5]
Between the Client and Service, there are a set of existing APIs that chainers are already using. For setting up the User Interface, chainers use MsiSetExternalUI and MsiSetInternalUI so that all the messages for the service are pumped through the chainer’s user interface. For driving package behaviors, chainers use MsiInstallProduct, MsiConfigureProductEx, and MsiApplyPatch among others. The following diagram illustrates a simple API flow between the Client and the Service for a two package chain for packages A and B.

[image: image6]
New Chainer Targeting Semantics

Ideally existing chainers could use new multi-package semantics with minimum changes on their part. This is accomplished by adding a begin and end semantic to envelope the package specific actions. The following diagram illustrates the addition of the begin and end calls to the earlier diagram of a simple API flow between the Client and the Service for a two package chain for packages A and B.

[image: image7]
MsiBeginTransaction
Windows Installer 4.5 adds the MsiBeginTransaction API to enable chainers to tell the Windows Installer that they want the multi-package transaction semantics. Once the transaction begins, the subsequent calls to package executing APIs are all done in the context of the multi-package transaction. Windows Installer will run the execution phase immediately and defer the commit phase to the end of the multi-package transaction.

(this section is an excerpt from Windows Installer documentation in Windows Platform Software Development Kit available from http://www.microsoft.com. For full information on this functionality, see the Platform SDK)

The MsiBeginTransaction function starts transaction processing of a multiple-package installation and returns an identifier for the transaction.
Signature

UINT WINAPI MsiBeginTransaction(

DWORD dwTransactionAttributes,

MSIHANDLE* hTransactionID

);

Parameters

	Parameter
	Meaning

	dwTransactionAttributes
	[in] Attributes of the multiple-package installation.

	
	0
	When 0 or no value is set it Windows Installer closes the UI from the previous installation.

	
	1
	When this attribute is set, this will signal Windows Installer not to shutdown the embedded UI until the transaction is complete.

	hTransactionID
	[out] Transaction ID is a MSIHANDLE value that identifies the transaction. Only one process can own a transaction at a time.

MsiEndTransaction

Windows Installer 4.5 adds the MsiEndTransaction API to enable chainers to tell the Windows Installer that they want to end the multi-package transaction. If the chainer tells the Windows Installer to commit, the Windows Installer will run the deferred the commit phase and end the multi-package transaction. If the chainer tells the Windows Installer to rollback, the Windows Installer will run the rollback scripts deferred from the execution phase and end the multi-package transaction.
(this section is an excerpt from Windows Installer documentation in Windows Platform Software Development Kit available from http://www.microsoft.com. For full information on this functionality, see the Platform SDK)

The MsiEndTransaction function can commit or roll back all the installations belonging to the transaction opened by MsiBeginTransaction function.
Signature

UINT WINAPI MsiEndTransaction(

DWORD msiTransactionState

);

Parameters

	Parameter
	Meaning

	msiTransactionState
	[in] The value of this parameter determines whether the installer commits or rollbacks all the installations belonging to the transaction.

	
	0
	Rollback all the installations belonging to the transaction.

	
	1
	Commit all the installations belonging to the transaction.

Embedded UI, Embedded Chainer, and Join Transaction
Choosing the agility of multiple packages also reduced the Windows integrated experience for a product. Application integration points like Windows Installer based advertising and auto-repair are only designed to support a single package natively. Similarly, the entry points in Add Remove Programs could also natively support a single package. Before Windows Installer 4.5, agility driven multiple package product providers had to forgo this native application integration.

Windows Installer 4.5 will advance the Windows Installer architecture so that the native single package events can be extended to integrate the multi-package chainer behavior.

Windows Shell Integration Theory

The Windows Installer integration into the Windows Shell operates through an identifier that includes a package identifier. Any operations from the Windows Shell to the Windows Installer occur with the context of that single specified package. When a product spans packages, there is the challenge to bridge from the native single package to a new multi-package experience.

Existing Integration with a Windows Installer package

A benefit from the beginning of the Windows Installer was the integration with Windows Shell. As Windows Installer was originally designed for one package to equal one product, the integration behaviors are tied a single package. Shell integration of Windows Installer packages made the user experience more robust and resilient to direct modification of the resources carried by the Windows Installer.
Generically for Windows Installer enabled integration points with the shell, the shell first checks to see if the Windows Installer enabled for that specific instance. If an integration instance is Windows Installer enabled, the shell sends a behavior request to the Windows Installer using the product id attached to that instance. The Windows Installer services the request using the product id, which can perform a configuration on the resources on the hard drive. After the Windows Installer completes the behavior requested by the Shell, the Shell can confidently use that instance of the integration point. The generic work flow for a Windows Shell to Windows Installer behavior is represented in the following drawing.

[image: image8]
New Integration targeting chained multi-package products

Before Windows Installer 4.5, a multi-package product can’t get access to the integration points that the Windows Shell is designed to call the Windows Installer. To enable chainer support beyond direct invocation of the chainer, the Windows Installer will need to provide an extension system that allows a package to bridge back to its chainer. For each of the Shell integration behaviors, the new extension system needs to be able to participate. Further, this new extension behavior needs to be possible without changes to the Windows Shell as the Windows Installer can be updated down level but the Windows Shell can’t.
Augmenting the generic work flow drawing above, new integration should plug to the Windows Installer behavior in the lower right hand corner as follows.

[image: image9]
The new extension system will come in two pieces, UI and execution, consistent with the existing partitioning of the Windows Installer. The UI piece is called “embedded UI” and is invoked at the appropriate place early in the UI sequence. The execution piece is called “embedded chainer” and is invoked at a place behaviors can be appended to the first package behavior. If the embedded UI needs to send context to the embedded chainer, the existing MsiSetProperty can be used.
Embedded UI

The embedded UI augments the current fully customizable external UI with the ability have the customized UI called from inside the package. For multi-package products, this will enable the aggregated user interface from the chainer to be the face of the product regardless of the way a particular package is invoked. This capacity is provided by a new MsiEmbeddedUI table along with three new callbacks for the embedded UI handler.
(this section is an excerpt from Windows Installer documentation in Windows Platform Software Development Kit available from http://www.microsoft.com. For full information on this functionality, see the Platform SDK)

The MsiEmbeddedUI table defines a user interface embedded in the Windows Installer package.
	Column
	Meaning

	MsiEmbeddedUI
	The primary key for the table.

	FileName
	The name of the file which receives the binary information in the Data column. Specify a short and long file name using the Filename format.

	Attributes
	Information about the data in the Data column.

	MessageFilter
	Specifies the types of messages that are sent to the user interface DLL. This column is only relevant for rows with the msidbEmbeddedUI attribute. This field should be null if the row references a resource file and the value of Attributes is null. If the row references a user interface DLL, the value in this column should not be null.

	Data
	This column contains binary information. If the Attribute field is marked with the msidbEmbeddedUI attribute, the information in this field must be a DLL. If the Attribute field is not the msidbEmbeddedUI attribute, the information in this field can be a resource file in any format.

New Callbacks

The InitializeEmbeddedUI function prototype defines a user-defined initialization function exported by the embedded user interface DLL that is defined in the MsiEmbeddedUI table. The initialization function should be called before displaying the user interface.

Signature

UINT CALLBACK InitializeEmbeddedUI(

MSIHANDLE hInstall,

LPCWSTR wzResourcePath,

LPDWORD pdwInternalUILevel

);

Parameters

	Parameter
	Meaning

	hInstall
	[in] A handle to the installer performing the installation.

	wzResourcePath
	[in] Pointer to a null-terminated string containing the full path to the directory containing all the files from the MsiEmbeddedUI table. The user interface DLL can use this path to load resources stored in the Windows Installer package.

	pdwInternalUILevel
	[in, out] Pointer to a location that contains the internal UI level.

On entry to the InitializeEmbeddedUI function, this parameter receives a value that indicates the current UI level for the installation. The value is a combination of INSTALLUILEVEL flags that notifies the UI handler whether the installation is at the full, reduced or basic User Interface Levels.

The EmbeddedUIHandler function prototype defines a callback function exported by the embedded UI DLL that is defined in the MsiEmbeddedUI table. Call the EmbeddedUIHandler function once for each message sent to the user interface.
Signature

INT CALLBACK EmbeddedUIHandler(

 UINT uiMessageType,

 MSIHANDLE hRecord

);
Parameters

	Parameter
	Meaning

	uiMessageType
	Specifies a combination of one message box style, one message box icon type, one default button, and one installation message type.

	hRecord
	Specifies a handle to a record containing message data.

The ShutdownEmbeddedUI function prototype defines a user-defined shutdown function exported by the embedded UI DLL that is defined in the MsiEmbeddedUI table. This function should be called at the end of the installation. After calling this function, the installer sends no additional messages to the embedded UI DLL and you can unload the DLL.

Signature

DWORD CALLBACK ShutdownEmbeddedUI(void);

Parameters

This callback has no parameters.
Embedded Chainer

The embedded chainer augments the current external chainer functionality with the ability have chaining functionality from inside the package. For multi-package products, this will enable the aggregated package behavior regardless of the way a particular package is invoked. This capacity is provided by a new MsiEmbeddedChainer table along with one new callbacks into the chainer.

(this section is an excerpt from Windows Installer documentation in Windows Platform Software Development Kit available from http://www.microsoft.com. For full information on this functionality, see the Platform SDK)

Each row in the MsiEmbeddedChainer table references a different user-defined MsiEmbeddedChainer callback function that can be used to install multiple Windows Installer packages from a single package. The executable files for the user-defined callbacks are stored inside the Windows Installer package. To install multiple packages from a single package, the package author must include a MsiEmbeddedChainer table that contains one callback in the table conditioned to run.

To install multiple packages from a single package, one of the callbacks listed in the MsiEmbeddedChainer table must have a conditional statment in the Condition field that evaluates to run the action. If more than one callback has a condition that evaluates to run, only one callback can run. This case is an error, and it cannot be guaranteed which callback will run. If other custom actions are needed by the installation, these should be authored into the CustomAction table and sequence tables.

	Column
	Meaning

	MsiEmbeddedChainer
	The primary key for the table. A unique identifier for the MsiEmbeddedChainer callback function described by this row.

	Condition
	A conditional statement for running the MsiEmbeddedChainer callback function. You can enable or disable the callback functions listed in the MsiEmbeddedChainer table using a transform that modifies property values evaluated by this field.

	CommandLine
	The value in this field is a part of the command line string passed to the executable file identified in the Source column. The installer appends the value in this field to the transaction handle to generate the command line. If the value in this column is null, the command line consists of only the transaction handle.

	Source
	The location of the executable file for the user-defined callback. If the value in the Type column is 2, this column can contain an external key into the Binary table. If the value in the Type column is 18, this column can contain an external key into the File table. If the value in the Type column is 50, this column can contain an external key into the Property table.

	Type
	The callbacks listed in this table have parity with some types custom action executables.

New Callbacks

The MsiEmbeddedChainer function prototype defines a user-defined function used to chain together multiple package installations. The executable files for the user-defined callbacks defined in the MsiEmbeddedChainer table and stored inside the Windows Installer package.
This function must call the MsiEndTransaction function to commit the transaction. If the transaction is still active when this function returns, Windows Installer will rollback all installations in the transaction.
Signature

UINT CALLBACK MsiEmbeddedChainer(void);
Parameters

This callback has no parameters.
MsiJoinTransaction

The one remaining gap here is the ability for the Embedded Chainer to connect itself to the multi-package transaction. This must be an explicit API call from the embedded chainer so that the Windows Installer knows when the embedded chainer is going to opt into doing work with multi-package transaction. By joining the transaction, calls such as MsiInstallProduct and MsiApplyPatch will function.
(this section is an excerpt from Windows Installer documentation in Windows Platform Software Development Kit available from http://www.microsoft.com. For full information on this functionality, see the Platform SDK)

The MsiJoinTransaction function requests that the Windows Installer make the current process the owner of the transaction processing installing a multi-package installation. Because a transaction can be owned by no more than one process at a time, the callbacks authored into the MsiEmbeddedChainer table can use the MsiJoinTransaction function to request ownership of the transaction before using the Windows Installer API to configure or install an application. The installer verifies that there is no installation in progress and that the process requesting ownership and the current owner are the same user. If the function succeeds, the process which calls MsiJoinTransaction function becomes the current owner of the transaction.
Signature

UINT WINAPI MsiJoinTransaction(

 MSIHANDLE hTransactionID,

 DWORD dwTransactionAttributes

);
Parameters

	Parameter
	Meaning

	hTransactionID
	[in] The transaction ID identifies the transaction and is the identifier returned by the MsiBeginTransaction function.

	dwTransactionAttributes
	[in] Attributes of the multiple-package installation

	
	0
	When 0 or no value is set it Windows Installer closes the UI from the previous installation.

	
	1
	When this attribute is set, this will signal Windows Installer not to shutdown the embedded UI until the transaction is complete.

New Embedded Control Flow
With the embedded functionality in place, the control flow from a direct package call will follow from the package to the service to the pair of embedded clients. The following diagram shows the process flow starting from the top left. This diagram does not try to show the communication between the UI and Chainer Clients which is expected to be necessary but is performed outside of any direct interaction with the Windows Installer.

[image: image10]
Advances for Servicing Agility

Packaged product agility comes up again during servicing. Servicing is the practice of updating products in market after they are first released. The Windows Update and Microsoft Update features from Microsoft are considered the server side of software servicing.

Basic Patching Background
Within Windows Installer, the servicing unit is usually a patch file usually with the MSP file extension. An MSP comes in two parts: a MSI delta and the payload that delta references. The process of installing a patch on the destination machine involves three main steps:

1. loading the existing MSI package on the machine into memory

2. merging the MSI delta from the MSP into the in memory MSI

3. running a repair on the merged MSI in memory.

The following drawing represents the basic operations on install of a patch.

[image: image11]
The process of uninstalling a patch from the destination machine involves the same three main steps but in reverse:
1. loading the existing MSI package on the machine into memory

2. remove the MSI delta from the MSP from the in memory MSI

3. running a repair on the reduced MSI in memory.

The following drawing represents the basic operations on uninstall of a patch.

[image: image12]
That install and uninstall of patches is really a delta apply or remove plus a repair has engineering effects that may not be realized until a product has started exercising its servicing systems. By making low level architectural changes that adjust these engineering effects; Windows Installer 4.5 is delivering new patching scenarios. These new Windows Installer 4.5 scenarios will make patching more robust and agile.
Product Agility during Patching

Product agility in servicing usually is driven by one of three factors. First, the required degrees of serviceability for the product was not fully managed in advance of the release so there are corrections that are needed to the Windows Installer package to improve its serviceability. Second, products do evolve after they are released thus can grow or shrink to meet the needs of the package producers or consumers. Third, as the number of agile products successively layers themselves onto a system and over each other, there management in during sustained engineering needs further attention.

Shared Component Patching

When two different Windows Installer products carry the same file installed to the same destination the servicing of those files overlap. When patches are uninstalled, the version that should be put back is calculated after the removal of the deltas. This behavior can cause files to be unintentionally downgraded. Concern over downgrades during servicing can reduce the agility available to package products.
The behavior seen before Windows Installer 4.5 is represented in the following diagram.

[image: image13]
In the above example of the unintentional downgrade, we have two Products A and B who both contain the file foo.dll. Product A ships with version 12.0 of foo.dll and Product B sips with version 12.5 of foo.dll. If the user installs Product A and B, they will have version 12.5 on the system as the highest version wins. Now let’s say Product A ships a patch with version 12.6. When Product A is patched the version of foo.dll on the system becomes 12.5. Now let’s say the patch to Product A’s patch was uninstalled, the version of foo.dll on the disk becomes 12.0. What most folks would have expected is that the version 12.5 was replaced on the patch uninstall.

With the shared component patching feature in Windows Installer 4.5, a Windows Installer package can set an attribute on the component and have the version on patch uninstall calculated across the Products that contained the component holding the shared file. With this attribute in place, the diagram is altered to the following diagram.

[image: image14]
In order to get this feature in your Windows Installer package you need to set the bit 0x0800 in the Component table Attribute column.

(this section is an excerpt from Windows Installer documentation in Windows Platform Software Development Kit available from http://www.microsoft.com. For full information on this functionality, see the Platform SDK)

If a component is marked with this attribute value in at least one package installed on the system, the installer treats the component as marked in all packages. If a package that shares the marked component is uninstalled, Windows Installer 4.5 can continue to share the highest version of the component on the system, even if that highest version was installed by the package that is being uninstalled.
Supersedence Robustness

A Windows Installer product is assumed to have fixed number of feature to component relationships when a product is superseded. If a patch has come along and altered the component count under a feature, the Windows Installer is engineered to interpret that as having put the product into the advertised state. The unintended side effect of having a feature flipped into the advertise state means that none of the components under the feature are serviceable thus payload in the patch is never applied. Concern over breaking servicing can reduce the agility available to package products.
Access to this feature, introduced with Windows Installer 4.5 is simply to set the bit 0x0400 in the Component table Attribute column. If this bit is set, supersedence will cause these marked components to be uninstalled, not mark the component count as mismatched for a feature and thus maintain the feature state and finally service the components of the feature.

(this section is an excerpt from Windows Installer documentation in Windows Platform Software Development Kit available from http://www.microsoft.com. For full information on this functionality, see the Platform SDK)

Set this bit for a component in a patch package to prevent leaving orphan components on the computer. If a subsequent patch is installed, marked with the msidbPatchSequenceSupersedeEarlier value in its MsiPatchSequence table to supersede the first patch, Windows Installer 4.5 can unregister and uninstall components marked with the msidbComponentAttributesUninstallOnSupersedence value.
Patch Uninstall Custom Actions

Before Windows Installer 4.5, if a patch carried a new or altered custom action that is called on application of the patch, there was no way for this same custom action code to be called on patch uninstall. This lack of symmetry for custom actions between patch install and uninstall caused some interesting patch uninstall code to have to be written somewhere other than the package to attempt to create patch symmetry. Concern over lack of symmetry during servicing can reduce the agility available to package products.
Access to this feature, introduced with Windows Installer 4.5 is simply to set the bit 0x8000 in the CustomAction table Type column. This option flag says run the custom action only when a patch is uninstalled.

(this section is an excerpt from Windows Installer documentation in Windows Platform Software Development Kit available from http://www.microsoft.com. For full information on this functionality, see the Platform SDK)

This attribute can be added to a custom action by authoring it in the Windows Installer package (.msi file). A new custom action with this attribute can be added by a patch. This attribute cannot be added or removed by a patch to an existing custom action. When running the patch uninstall custom action, Windows Installer uses the custom action provided in the patch that is being uninstalled. Windows Installer makes the updates within the patch being uninstalled available to the patch uninstall custom action.

When a package containing a custom action with the msidbCustomActionTypePatchUninstall attribute is installed using an installer version earlier than Windows Installer 4.0, the installer does not call the custom action when the patch is uninstalled. The install can run the custom action during the installation, repair, or update of the package.

Custom actions with the msidbCustomActionTypePatchUninstall attribute should be conditioned using the MSIPATCHREMOVE property to prevent the custom action from running when installing, repairing, or updating using a system with Windows Installer 4.0 or earler. When Windows Installer 4.5 is installed, all the patches on the system having custom actions marked with the msidbCustomActionTypePatchUninstall attribute run the custom action during patch uninstallation. If Windows Installer 4.5 is removed from the system, patches lose the custom action patch uninstall functionality.

Agile Packaging with Chainers and Package Tooling
If multi-package product agility is for you, the advances provided in Windows Installer 4.5 are a start but not sufficient by itself. As you’ve seen highlighted in this paper, the Windows Installer agile packaging features the need a chainer that stitches packages together into products. Whether you build or buy, a chainer generally has three working layers: aggregating user interface, package relationship data source, and interface to the Windows Installer.

While surveying the field during prioritization of the Windows Installer 4.5 features, the list of features the Windows Installer found in chainers included

· Multilingual support in chainer user interface

· Support authoring both single package and multi-package transaction boundaries

· Aggregate disk costing across the underlying packaging

· Cache the sources image for the original installs

· Command line distribution to each of the individual packages

· Aggregate restart manager/files-in-use across the underlying packaging

· Launch condition aggregation across the underlying packaging
· Reboot aggregation across the underlying packages

· Chainer’s own robustness to reboots

· Self-update for the chainer binaries and the chainer data files

· Sharing the same chainer across multiple products

· Ensuring all the patches are available in advance of the initial install

· Application update from the web

· Cross package ref counting and the user experience there upon

· Log handling and aggregation

· Error handling and aggregation

· Windows error reporting handling and aggregation
Given these features existed in the state of the art chainers, Windows Installer 4.5 chose to defer these features and focus on the lower layers in the system. Whether you are going to buy or build, there is plenty of opportunity for chainers to differentiate themselves in the market.
Beyond the chainer functionality itself, your package authoring tools and distribution systems may also need to be examined for their capacity and flexibility to dividing previously monolithic packages into agile packaging. If you are a package producer (more commonly called an Independent Software Vendor or ISV), your packaging tools may need upgrading to help you decide on which axes you want to partition and then deliver that partitioning. If you are a package consumer (more commonly called an Information Technology Professional or IT Pro), your software management tools may need upgrading to help you integrate the larger number of packages and the various packaging relationships.
Delivering product agility for packaged software
Packaged software product agility is driven by shrinking production time, longer product lifetimes, increasingly rich integration, and greater return on scarce resources. By layering the set of technologies that move packaged products toward product agility, the agility infrastructure itself is able to move with agility. In the packaging layer, the Windows Installer 4.5 release improves the robustness and Windows integration of a multi-package agile product. With coordinated innovation in other layers, packaged software will become much more responsive to the agile product market forces.
Script finalization

Script execution

Script generation

Apply Change (forward)

Commit stage

Execution stage

Acquisition stage

Rollback (On Error)

Rollback script

not needed, no changes yet

best effort,

no guarantee

Figure � SEQ Figure * ARABIC �1�: Review of Existing Single Package Transaction semantics

best effort,

no guarantee

not needed, no changes yet

Product B rollback

Product B finalization

Product A execution

Product A generation

Multi-Package Commit Phase

Multi-Package Execution Phase

app: text processor

Apply Change (forward)

Rollback (On Error)

Product B execution

Product B generation

Product A finalization

best effort,

no guarantee

not needed, no changes yet

Product B rollback

lang: neutral

lang: en-us

app: mail client

lang: neutral

app: text processor

lang: en-us

app: mail client

redist: text smart framework

lang: neutral

lang: en-us

redist: network smart framework

redist: network smart framework

redist: text smart framework

lang: en-us

lang: neutral

Architectural Layer Partitioning

Suite Partitioning

Language Partitioning

Windows Installer Service

Server

Client

Aggregating User Interface

Package Relationship Data Interface

Windows Installer Client Interface

Chainer

Client

Service

MsiSetExternalUI MsiSetInternalUI

UI Message Pump to Client

MsiInstallProduct (Package A)

MsiInstallProduct (Package B)

Client

Service

MsiSetExternalUI MsiSetInternalUI

UI Message Pump to Client

MsiInstallProduct (Package A)

MsiInstallProduct (Package B)

MsiBeginTransaction

UI Message Transaction Ended

MsiEndTransaction

Call API w/ product id

No

Yes

Shell uses resources

Resources (correctly configured)

Windows Installer enabled?

Windows Installer behavior

Request behavior w/ product id

Shell click

Shell click

Request behavior w/ product id

Package A behavior

Windows Installer enabled?

Resources (correctly configured)

Shell uses resources

Yes

No

Call API w/ product id

Extension behavior w/ product id

Package B behavior

MsiInstallProduct (Package B)

MsiSetProperty (CHAIN=Package A)

UI Message Pump to Client

MsiEmbeddedUI (create client process)

Service

UI Client

Invoke Package A

InitializeEmbeddedUI

Chain Client

MsiEmbeddedUI (create client process)

MsiEmbeddedChainer

MsiJoinTransaction

MsiEndTransaction

ShutdownEmbeddedUI

Product @ V1.0

Patch V1.1

Patch Payload

Product @ V1.1

� EMBED Visio.Drawing.11 ���

Merge View

� EMBED Visio.Drawing.11 ���

Repair of View

Product @ V1.0

Product @ V1.1

Patch Payload

Patch V1.1

� EMBED Visio.Drawing.11 ���

Merge View

� EMBED Visio.Drawing.11 ���

Repair of View

T ime

Install Product A w/ shared file foo.dll @ V 12.0

Foo.dll

v 12.0

Foo.dll

v 12.5

Install Product B w/ shared file foo.dll @ V 12.5

Foo.dll

v 12.6

Patch Product A w/ shared file foo.dll @ V 12.6

Foo.dll

v 12.0

Unpatch Product A w/ shared file foo.dll @ V 12.6

T ime

Install Product A w/ shared file foo.dll @ V 12.0

Foo.dll

v 12.0

Install Product B w/ shared file foo.dll @ V 12.5

Foo.dll

v 12.5

Patch Product A w/ shared file foo.dll @ V 12.6

Foo.dll

v 12.6

Unpatch Product A w/ shared file foo.dll @ V 12.6

Foo.dll

v 12.5

27 | Page

[image: image15.emf][image: image16.emf][image: image17.emf][image: image18.emf][image: image19.emf][image: image20.emf]_1247150260.vsd

_1247150621.vsd

_1247150150.vsd

